人工智能

515.【kubernetes】Scheduler 的调度流程

Kuberenetes Scheduler 在整个系统中承担了“承上启下”的重要功能,“承上”是指它负责接收 Controller Manager 创建的新 Pod,为其安排一个落脚的“家”——目标 Node;“启下”是指安置工作完成后,目标 Node 上的 kubelet 服务进程接管后续工作,负责 Pod 生命周期中的“下半生”。 具体来说,Kubernetes Scheduler 的作用是将

Apache Flink——Watermark 水位线

前言 在流数据处理应用中,一个很重要、也很常见的操作就是窗口计算。所谓的“窗口”,一般就是划定的一段时间范围,也就是“时间窗”;对在这范围内的数据进行处理,就是所谓的窗口计算。所以窗口和时间往往是分不开的。 基本概念是什么 Window:Window是处理无界流的关键,Windows将流拆分为一个个有限大小的buckets,可以可以在每一个buckets中进行计算。 start_time、end

门槛回归模型、门限回归 ,(xthreg2命令安装包)stata平衡面板和非平衡面板均可估计,命令安装LR画图,门槛个数检验

门槛回归模型、门限回归stata操作步骤讲解,平衡面板和非平衡面板均可回归,从命令安装和具体回归分析以及LR画图都讲的很详细哦,stata面板门槛回归模型,门限模型,门限回归,门槛模型,面板xthreg ,命令安装和回归分析LR画图都讲的很详细哦,资料都是本人在学习面板门槛模型是归纳总结的,结合了连玉君老师以及王群勇两位老师的命令,配有详细的操作代码、示例数据以及图文注释,可以跟着整体跑一遍,就可

9. k-近邻的k的影响有多大?

k-近邻涉及到的参数不多,也容易玩,因此我们来看下最为关键的参数k,对结果的影响。 之前我们都是把结果设置成了3,如数字识别,3的结果是1.06%的错误率。 我们来看看其他的: 1:最靠近哪个就是哪个,1.37%的错误率,也很不错嘛!看来你和闺蜜/兄弟的性格很接近啊。 2:1.37%,也挺好; 5:1.79%,开始下滑了; 10:2%        20:2.75%        50:5.18%

单细胞数据挖掘实战:文献复现(一)批量读取数据

最近开始接触单细胞数据,网上也有很多学习资料,琳琅满目,我也挑了一些视频资料进行学习,不过感觉还是需要进行实战训练才能更好地掌握这些知识,所以选了一篇2021年发表在nature communications的文章进行学习。 文献: Single-cell RNA sequencing reveals functional heterogeneity of glioma-associated

7. 宝剑还需剑鞘:核心算法外的一些代码实现

k-近邻算法是个挺好的算法,我喜欢,也希望大家喜欢。它简单小巧,如同一柄鱼肠剑,但同样锋利无比。上一篇我们解读了核心的13行代码,由于作者用了一番python的特色函数,所以写的短小精悍。我也会尝试写一个行数更多、跑的更慢,但更容易理解的,这在后文再说,到时候也会就性能等做个对比。现在,我们先来看看,除了核心代码外的一些实现。 先来看一下数据的准备,如何从文本文件里读出数据并转换成numpy数组

[SPARK][CORE] 面试问题之 Shuffle reader 的细枝末节 (上)

欢迎关注微信公众号“Tim在路上” 之前我们已经了解了shuffle writer的详细过程,那么生成文件后会发生什么呢?以及它们是如何被读取呢?读取是内存的操作吗?这些问题也随之产生,那么今天我们将先来了解了shuffle reader的细枝末节。 在文章Spark Shuffle概述中我们已经知道,在ShuffleManager中不仅定义了getWriter来获取map writer的实现方式

数据分析工具推荐 | bulkAnalyseR:用于分析和共享批量多组学数据的交互式工具包

批量测序实验(单组学和多组学)对于探索广泛的生物学问题至关重要。为了促进交互式、探索性任务以及共享易于访问的信息,《Briefings in Bioinformatics》发表了一个集成了最先进方法的工具包:bulkAnalyseR,可以处理不同的模式数据(转录、表观、时空等),促进顺式,反式和定制调控网络的强大集成和比较。 bulkAnalyseR是什么? bulkAnalyseR

8款国内外免费AI生成视频工具对比实测!我们真的可以做到“一人搞定一部影视作品“吗?

AI生成视频工具的不断普及,其竞争赛道愈发激烈。产品宣发中的精美AI视频更是铺天盖地而来。宣传必不可少,但实际生成AI视频效果如果和宣传差距太大,会大大降低用户的期待值,浪费用户的时间成本,资金成本。因此本文将从AI生成速度、一次可生成视频内容时长、视频呈现效果、文本指令理解,长视频制作等维度对国内外热门AI视频生

基于YoloV11和驱动级鼠标模拟实现Ai自瞄

本文将围绕基于 YoloV11 和驱动级鼠标实现 FPS 游戏 AI 自瞄展开阐述。 需要着重强调的是,本文内容仅用于学术研究和技术学习目的。严禁任何个人或组织将文中所提及的技术、方法及思路应用于违法行为,包括但不限于在各类游戏中实施作弊等违规操作。若因违反此声明而产生的一切法律后果,均与本文作者无关。 一、原理AI 自瞄是一种借助人工智能技术自动控制瞄准