人工智能

“FAQ + AI”智能助手全栈实现方案

文章目录 **第一部分:总体架构与技术选型** **1.1 核心架构图** **1.2 技术选型说明** **第二部分:详细实现步骤** **2.1 环境准备与项目初始化** **2.2 知识库处理与向量化 (Ingestion Pipeline)** **2.3 构建后端API (FastAPI Server)** **2.4 构建简单

Flink简介

第一章 初识Flink 大数据开发总体架构 大数据开发总体架构 数据传输层: 常用的数据传输工具有Flume、Sqoop、Kafka。Flume是一个日志收集系统,用于将大量日志数据从不同的源进行收集、聚合,最终移动到一个集中的数据中心进行存储。Sqoop主要用于将数据在关系型数据库和Hadoop平台之间进行相互转移。Kafka是一个发布与订阅消息系统,它可以实时处理大量消息数据以满足

实测AI Ping,一个大模型服务选型的实用工具

作为一名长期奋战在一线的AI应用工程师,我在技术选型中最头疼的问题就是:“这个模型服务的真实性能到底如何?” 官方的基准测试总是在理想环境下进行,而一旦投入使用,延迟波动、吞吐下降、高峰期服务不可用等问题就接踵而至。 直到我发现了由清华系团队打造的AI Ping,这个平台号称能提供真实、客观的大模型服务性能评

Apache Flink——多流转换

概述 无论是基本的简单转换和聚合,还是基于窗口的计算,都是针对一条流上的数据进行处理的。而在实际应用中,可能需要将不同来源的数据连接合并在一起处理,也有可能需要将一条流拆分开,所以经常会有对多条流进行处理的场景。 简单划分的话,多流转换可以分为“分流”和“合流”两大类。目前分流的操作一般是通过侧输出流(side output)来实现,而合流的算子比较丰富,根据不同的需求可以调用 union、con

不止于恶搞:把Seedream 4.0当作“AI版PS”,这是一份实战手册

目录前言工具箱一:终极“内容识别”——锁定万物的主体一致性实战玩法:创建你的“角色设定集”工具箱二:来自未来的“智能图层”——玩转多图融合实战玩法:零成本的“虚拟摄影棚”工具箱三:自带排版师的“文字工具”——精准的中文渲染实战玩法:快速海报设计迭代工具箱四:解放想象力的“动作脚本”——连续生图与故事板

大模型选型“炼狱”与终结:一份来自普通开发者的AI Ping深度评测报告

在人工智能应用开发的浪潮中,每一位开发者或许都经历过相似的“启蒙时刻”:初次调用大模型API,看到屏幕上流畅涌现出精准答案时的兴奋。然而,当兴奋褪去,真正将大模型集成到生产环境时,一场更为严峻的考验才刚刚开始。这不再是关于模型能否回答“地球为什么是圆的”,而是关乎你的应用能否在真实的用户压力下&#xf

AI智能体|扣子(Coze)全网最详细讲解(保姆级)

没有任何编程基础?没关系! 这篇保姆级教程将手把手教你用Coze平台打造能搜索新闻、分析数据、创作内容的AI智能体,让你的工作效率提升300%。从此告别加班,让AI成为你最强力的工作伙伴! 什么是AI智能体?一个简单的解释想象一下,你需要在知乎上回答一个专业问题。传统方式是:搜索

AI Ping:精准可靠的大模型服务性能评测平台

目录引言一、界面设计与交互体验二、功能布局与使用逻辑三、网站性能、响应速度与准确性四、性能排行五、AI Ping存在的问题与改进建议(个人建议)六、主流AI平台横向对比分析1. 对比表格2. 数据图表比较3. 对比分析七、结语引言随着生成式人工智能(AIGC)热潮兴起,各大厂商相继推出了自己的大模型应用。然而面对琳琅满目的AI平

现代AI工具深度解析:从GPT到多模态的技术革命与实战应用

🌟 Hello,我是蒋星熠Jaxonic! 🌈 在浩瀚无垠的技术宇宙中,我是一名执着的星际旅人,用代码绘制探索的轨迹。 🚀 每一个算法都是我点燃的推进器,每一行代码都是我航行的星图。 🔭 每一次性能优化都是我的天文望远镜,每一次架构设计都是我的引

【实操分享】使用 SeeDream 4.0 进行 AI 修图——开启专属“AI 云旅拍”

一分钟学会用 SeeDream 4.0 进行 AI 修(“造”)图——不出于户,已游天下。 超快上手的全流程技术分享 文章目录 一分钟学会用 SeeDream 4.0 进行 AI 修(“造”)图 前言 一、适用人群 二、文生图——生成修图素材 1. 进入平台 2. 生成示例 三、AI 修图操作&#xff