人工智能

1分钟极速生成简历表单,AI与Flash Table实战让你领先一步

前言过去,开发和业务人员在制作复杂表单时,常常遇到流程繁琐、效率低下等问题。传统开发方式不仅耗时,还容易出现数据整合和交互设计的难题。现在有一个热门了低代码平台Flash Table,它简化了表单开发流程,让用户可以更快地创建和管理复杂表单,提高了整体效率。现在,开发者处理数据和交互问题变得更加轻松

图神经网络:GAT图注意力网络原理和源码解读(tensorflow)

标签:图神经网络,图注意力网络,注意力机制,GAT,tensorflow 本文内容分为三块: GAT原理扫盲 GAT源码阅读(tensorflow) GAT源码链路分析 GAT的GraphSAGE策略实现分析 原理初步理解 (1)从GNN,GCN到GAT 先看个哔哩哔哩视频理解一下,链接地址GAT原理视频链接 GNN学习的是邻居节点聚合到中心的方式,传统的GNN对于邻居节点采用求和/求平均的

Skywalking(v8.5.0)优化系列汇总

章节规划如下: 1. Agent的能力|设计|优化 我们需要观测什么 SkyWalking Agent 能观测什么 如何采集可观测性数据 揭开 Java Agent 的面纱 SkyWalking Agent 的设计及使用优化 参考文末附录:【当月亮守护地球 | SkyWalking Agent守护你的应用...有它相伴才安逸】 2. Agent插件篇 3. 负载均衡篇 4. 服务集群篇 5.

最大熵原理及代码

一.最大熵原理 最大熵的思想很朴素,即将已知事实以外的未知部分看做“等可能”的,而熵是描述“等可能”大小很合适的量化指标,熵的公式如下: 这里分布的取值有种情况,每种情况的概率为,下图绘制了二值随机变量的熵: p=np.linspace(0.1,0.9,90) def entropy(p): return -np.log(p)*p-np.log(1-p)*(1-p) plt.plot

ScheduledThreadPoolExecutor(定时任务线程池)

对于线程池,从全局视角来看,有两个基本点: 线程的数量 阻塞队列 ScheduledThreadPoolExecutor的线程数量: 如果corePoolSize大于0,那么线程数量最终就是corePoolSize,都是核心线程,没有非核心线程,maximumPoolSize形同虚设。 如果corePoolSize等于0,只会创建1个非核心线程。 ScheduledThreadPoolExec

读《财富的起源》13

制造有趣的外生因素 传统经济学理论就像碗中球,无论我们让球滚到碗中的什么地方,它都会回到同一个均衡点上。 震动一开始就会让球离开均衡点,不断地在碗内滚动。当我们压弯碗的一边(请想象这是一只橡胶碗),改变约束的形状,最终球会根据碗的新形状而在一个新的均衡点停下。 模型限制之外的变量被称为外生变量,而模型限制内的变量则被称为内生变量。典型的外生变量包括客户喜好、技术创新、政府调控和天气变化。 在传统经

解析Apache BookKeeper

本系列关于 BookKeeper 的博客希望帮助大家理解和掌握 BookKeeper 原理和内部逻辑。理解系统内部运行逻辑是快速定位并解决生产问题以及开发和修改新功能的基石。在本系列后续文章中,我会将BookKeeper各项指标与运行机制相结合,为大家展现高效进行性能问题定位的方法。 BookKeeper 中包含很多不同的插件,我们主要关注 BookKeeper 作为 Apache Pulsar

提高数据科学效率的 8 个Python神库!

在进行数据科学时,可能会浪费大量时间编码并等待计算机运行某些东西。所以我选择了一些 Python 库,可以帮助你节省宝贵的时间。 1、Optuna Optuna 是一个开源的超参数优化框架,它可以自动为机器学习模型找到最佳超参数。 2、ITMO_FS ITMO_FS 是一个特征选择库,它可以为 ML 模型进行特征选择。拥有的观察值越少,就越需要谨慎处理过多的特征,以避免过度拟合。所谓“谨慎”意思是

数据中台分析—数据采集与清洗

上一篇《数据中台分析—什么是数据中台?》我们提到,什么是数据中台,数据中台的核心功能。那这一篇我们来研究一下,数据中台中最重要的一步,数据的采集和数据清洗: 数据采集与数据清洗 在做数据采集和数据清洗方式,需要考虑以下几点: 1、数据来源:确定需要采集的数据来源和数据类型,包括数据源的格式、协议、接口等。 2、数据采集方式:根据数据源的类型和数据采集的目的,选择合适的数据采集方式,例如