人工智能
R进行两因素重复测量方差分析并可视化(双组折线图)
在仙桃学术上的生信工具里面,有一个折线图的绘图工具,可以很快速便捷的得出结论并可视化结果,当然不是说这个功能有多强大,而是统计学方法非常专业。
比如用它自带的数据
通过无脑式的鼠标点击,可得到下面一系
IO-Zero Copy
要说 IO 的性能优化就不得不提 Zero Copy(零拷贝),虽然名字叫零拷贝,但其实并不是完全没有拷贝过程,而是尽量减少不必要的拷贝及上下文切换。各种消息队列可以说是将零拷贝技术用到了极致,像 Kafka、RocketMQ 都用到到了 mmap、sendfile 等零拷贝技术来提升服务的性能。我们最常用的应用服务 Tomcat、Nginx 在返回静态资源的时候,都有使用零拷贝技术
心理学研究方法(22)
中原焦点团队坚持分享第1084天(20230123)
主因素分析使用最广泛,它可以运用每一变量与其它所有变量的平方和作为公共因素方差的估计值。人们主张以主因素分析确定基本因素数目,以最大似然因素分析求出因素荷重的准确值。
传统因素分析法采用重心法。
因素分析的基本步骤:
1、数据的采集,要求连续的,不间断的数据资料。从同一总体抽样,运用等距或等比量表测定,获得原始数据,应力求数据测量的高效度,防止
DG知识点整理 - 数据伦理
//本系列是基于DMBOK2的学习过程中的知识点整理,方便学习与回顾//
数据伦理描述的是在数据全生命周期中,如何用符合伦理(不仅仅是法律要求)的行为来完成数据的处理。组织要注重数据伦理的原因有几个
1)数据对个人的影响,它会被用于各类决策,进而影响个人的生活;
2)数据有被滥用的可能;
3)数据具有经济价值,需要规定数据的所有权,使用权和使用方式。
数据管理者有有管理数据
基于R语言的微生物群落组成多样性分析——PCA分析
PCA,即主成分分析(Principal Component Analysis),是一种考察多个变量间相关性的降维统计方法,其原理是设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法(摘自百度百科)。
通俗来说,就是将数据从高维映射到低维以达到降低特征维度的目的。计算时,主要通过对协方差矩阵进
ChatGPT 背后的数学
ChatGPT是由OpenAI开发的语言模型,它使用深度学习在自然语言中生成类似人类的响应。它基于转换器架构,并在大量文本数据语料库上进行训练,以生成连贯且有意义的答案。ChatGPT 背后的数学很复杂,涉及几种深度学习技术。
image.png
转换器架构
转换器架构是一种深度学习模型,由Vaswani等人在论文“注意力是你所需要的一切”中引入。它是一种神经网络架构,使用自注意机制来
提高数据科学效率的 8 个Python神库!
在进行数据科学时,可能会浪费大量时间编码并等待计算机运行某些东西。所以我选择了一些 Python 库,可以帮助你节省宝贵的时间。
1、Optuna
Optuna 是一个开源的超参数优化框架,它可以自动为机器学习模型找到最佳超参数。
2、ITMO_FS
ITMO_FS 是一个特征选择库,它可以为 ML 模型进行特征选择。拥有的观察值越少,就越需要谨慎处理过多的特征,以避免过度拟合。所谓“谨慎”意思是
解析Apache BookKeeper
本系列关于 BookKeeper 的博客希望帮助大家理解和掌握 BookKeeper 原理和内部逻辑。理解系统内部运行逻辑是快速定位并解决生产问题以及开发和修改新功能的基石。在本系列后续文章中,我会将BookKeeper各项指标与运行机制相结合,为大家展现高效进行性能问题定位的方法。
BookKeeper 中包含很多不同的插件,我们主要关注 BookKeeper 作为 Apache Pulsar
