人工智能

大模型选型“炼狱”与终结:一份来自普通开发者的AI Ping深度评测报告

在人工智能应用开发的浪潮中,每一位开发者或许都经历过相似的“启蒙时刻”:初次调用大模型API,看到屏幕上流畅涌现出精准答案时的兴奋。然而,当兴奋褪去,真正将大模型集成到生产环境时,一场更为严峻的考验才刚刚开始。这不再是关于模型能否回答“地球为什么是圆的”,而是关乎你的应用能否在真实的用户压力下&#xf

一文讲完random:python中的随机模块

我们在python工程和数据分析中经常用到随机的操作,比如随机生成某个值,对一串数据进行随机排序等等。random是python一个很强的第三方库,可以实现常用的随机算法。 安装:pip install random 一:生成随机的数字 0~1之间的随机小数(float):random.random() a~b之间的随机小数(float):random.uniform(a, b) [a, b)之

R语言-超大型数据框与稀疏矩阵的切片-处理as.matrix方法的“problem too large”异常

单细胞组学数据分析接触到的项目大都使用平面文件(rds,txt,tsv,csv,mtx)进行数据存储。有时候,我们会操作相当大的平面文件,而超大型的数据集如(一个包含约 100 万个细胞和约 3 万个基因的表达矩阵)在进行数据类型转换等处理的时候会遇到异常Error in asMethod(object) : Cholmod error 'problem too large',指的是其中 as.

【AI云原生】1、Function Calling:大模型幻觉破解与Agent底层架构全指南(附Go+Python实战代码)》

引言:大模型的"致命短板"与Function Calling的诞生当我们向大模型提问"2024年诺贝尔物理学奖得主是谁"时,它可能会自信地给出一个不存在的名字;当计算"12345×67890"时,它可能返回一个看似合理却错误的结果——这就是大模型的"幻觉"问题,也是制约其在专业领域应用的核心瓶颈。大模型为何会产生幻觉?根本原因有两点:一是训练数据的局限性,模型无法覆盖实时更新的信息(如最新奖项、

先为不可胜——中小企业生存之道38

第五章 第4节 胜任特征模型         企业选人和用人需要科学的标准,也就是常说的职务说明书或者叫岗位描述。岗位胜任特征模型就是主要解决企业中不同岗位需要明确的岗位关键胜任力素质标准量化的问题,解决实践中我们遇到的什么素质类型的人能够在这个岗位上产生高绩效的问题。         胜任特征指能将某一工作(或组织、文化)中有卓越成就者与表现平平者区分开来的个人的潜在特征,它可以是动机、特质、自

打造个人品牌三个快速破圈的方法

个人品牌3个破圈的方法: 1、不断输出 不断地输出内容、资源、能力、技能等,因为只有不断向外输出才会吸引志同道合的人······ 2、真诚利他、主动合作 你要积极地去创造价值,学会价值互换,才会越合作越赚钱······ 3、为价值买单 有用的价值:往往三言两语带你走出弯路(有些真理都在言语当中)······ 无用的价值:就是给你无用的课程让你自己去学(什么也不说什么也不教)······

m6A相关研究到底还有什么新方向

The m6A-Related Long Noncoding RNA Signature Predicts Prognosis and Indicates Tumor Immune Infiltration in Ovarian Cancer m6A相关的长非编码RNA特征可预测预后并显示卵巢癌的肿瘤免疫浸润情况 发表期刊:Cancers (Basel) 发表日期:2022 Aug 22 影响因

Scissor:联合表型数据,Bulk-seq和scRNA(2)

前面一个帖子讲了scissor的原理以及paper中的一些应用实例。几天我们来测试这个工具。 ========安装======== devtools::install_github('sunduanchen/Scissor') devtools::install_github("jinworks/scAB") 注:因为我们还要用到scAB工具中的例子,所以顺便安装一下。 library(Sciss

2025时序数据库选型,以IoTDB为主从架构基因到AI赋能来解析

> 💡 原创经验总结,禁止AI洗稿!转载需授权>  声明:本文所有观点均基于多个领域的真实项目落地经验总结,数据说话,拒绝空谈!目录引言:你的数据库,能应对时序数据的“四重考验”吗?一、维度一:架构基因 —— 从根源看懂谁是“天选之