基于物理引导和不确定性量化的轻量化神经网络机械退化预测算法(Python)
算法正在完善中算法正在完善中核心是通过融合物理模型和深度学习进行机械退化轨迹预测和不确定性量化。首先对原始振动信号提取时频域特征,与运行时间、温度等物理变量共同构成输入向量;然后加载预训练的多架构神经网络模型(包括CFC、LTC、TCN、LSTM等),这些模型均集成了物理退化方程的约束项;接着在不同工况࿰

